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Abstract

The primary objective of this study was to find the smallest sample size for which
equating based on a random groups design is expected to result in less overall equating
error than had no equating been conducted. Mean, linear, and equipercentile equating
methods were considered. Some of the analyses presented in this paper assumed that the
test scores are normally distributed. Other analyses are not based on this assumption. Real
test data were used to check whether the theoretical methods provide reasonably accurate

results for use in estimating sample size requirements.



1.Introduction

Background

The comparability of scores derived from different tests measuring the same
achievement trait, or ability, is an important concern in educational measurement. The
primary purpose of equating is to achieve this comparability. Alternative forms of a test are
usually constructed from the same content specifications and statistical specifications so that
the item statistics for the forms are relatively similiar.. Equating procedures are used to
adjust test scores on alternative test forms that are somewhat different in difficulty so that
the test scores on these forms can be used interchangeably for a specified population. The
examinees used to accomplish the equating should be representative of the population that
will be using the tests. | |

Equating studies frequently use three types of designs: (1) random groups; (2)
single group with counterbalancing; and (3) common-item nonequivalent groups. In the
random groups design, examinees are randomly assigned the form by a spiraling process.
When this process is used, the first examinee takes Form X, the second examinee takes
Form Y, the third examinee takes Form X and so on. This spiraling process leads to two
randomly équivalent groups. ln this design, differences in the test scores on the alternative
fonﬁs are attributed to the differences in difficulty of the alternative forms.

If practice or fatigue factors and order effects which may confound the differences
between test scores on alternative forms can be controlled, then the single group design
with conterbalancing can be used. In this design, every examinee takes both Form X and
Form Y. In one method of counterbalancing, one-half of the booklets are printed with
Form X following Form Y and one -half of the booklets are printed with Form Y following
Form X. When the test book]eis are handed out, the first examinee receives Form X first,

the second examinee receives Form Y first, the third receives Form X first, and so on. The
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first form and second form are administered using separate time limits. In this way, the
examinee group receiving Form X first is randomly equivalent to the examinee group
receiving Form Y first (Kolen & Brennan, 1995). Hence, the spiraling process in the single
group design with counterbalancing is similar to that used with the random groups design,
except that in the random groups design each examinee takes only one form of the test.
However, if order effects occur in which there are differences between the eqﬁaﬁng
relationships for examinees taking Fbrm X first compared to those taking Form Y first,
then the data taken for the second test may need to be discarded.

If only one form can be used per test date for test security reasons, the common-
item nonéquiva]ent groups design might be considered. In this design, examinees from a
specified group take one form on a specified test date and examinees from the other grdup
take the other alternative form on the other specified test date. Thus the forms are taken by
two nonequivalent groups. In this situation, a common item set in each test form is used to
accomplish the equating.To accurately reflect group differences and to effectively separate
group differences from form differences, the common item set in each test form should
conform to several conditions. First, the common item set should be proportionally
representative of Form X and Form Y in content and statistical characteristics. Second,
each common item should have approximately the same item number in both forms. Third,
the common items should be exactly the same in both forms.

A variety of statistical procedures or equating methods can be used to equate scores
on Form X (new form) and Form Y (old form). Three statistical estimation methods are
frequenﬂy used in observed score equating for the random groups design: (1) mean
equating; (2) linear equating; and (3) equipercentile equating. In mean equating, Form X
differs in difficulty frofn Form Y by a constant amount along the score scale (Kolen and

Brennan, 1995). In mean equating, scores on Form X and Form Y that are an equal

distance away from their respective means are set equal: x-p(X) = y-p(Y). Then,



my(x) = y =x-uX)+ p(Y), (1) 2.2)!
where x is a particular score on Form X

X is the random variable score on Form X.

y is a particular score on Form Y.

Y is the random variable score on Form Y.

p(X) is the mean on Form X of a population of examinees.

1(Y) is the mean on Form Y of a population of examinees.

m(x) is a score x on Form X transformed to the scale of Form Y using mean

equating.

For-erxample,‘assume-memean@nf.onn‘x.is.éﬂ.&_nd.the.mean_of_Eonn_Y_i_s 47. Then, by,

equation (1), 7 points must be added to each Form X score to transform the X-score to the
Y scale. That is, a score of 40 on Form X indicates the same level of achievement as a
score of 47 on Form Y and a score of 50 on Form X indicates the same level of
achievement as a score of 57 on Form Y. When mean equating is used, the mean of the
converted Form X scores is equal to the mean of the Form Y scores.

With the linear equating method, the differences in difficulty between two forms are
allowed to vary along the score scale. Linear equating is accomplished by setting z-scores
on X ( test score on Form X minus the Form X mean divided by the standard deviation of
the Form X test scores) equal to z-scores on Y ( test score on Form Y minus the Form Y

mean divided by the standard deviation of the Form X test scores) such that

[x-p(X)1/ o(X) = [y-H(Y)] / o(Y). Then, (2) (2.3)

1,(x) =y = [6(Y) / 6(X)] x + {u(Y) - [6(Y) / 6(X)] LX)}, (3) 2.5)

! Throughout this paper a number of formulas reported in Kolen and Brennan (1995) are used. The second
equation number provided for some equations is the equation number in Kolen and Brennan. Also, the
notation used in this paper is consistent with the notation in Kolen and Brennan.
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where o(X) and o(Y) are the standard deviations of Form X and Form Y scores,

respectively.’

1,(x) is the linear conversion equation for converting x on Form X to the scale df

Form Y.
Obviously, if the standard deviations of both forms are equal, then the linear equating
method produces the same result as the mean equating method such that equation (1) is
equal to equation (3). For a linear equating, the mean of the converted scores on Form X is
equal to the mean of the Form Y scores and the standard deviation of the converted scores
on Form X is the same as the standard deviation of the test scores on Form Y. To illustrate

that the difference in test form difficulty varies with score level consider the following

exdtple-Supposed-o(X)=5;0(Y)=37(X)=40;and-p(Y)=47—TFhen;-the-resulting linear

conversion equation is 1,(x) = 0.6x + 23 {equation (3)]. Once x is known the equated value
is known. For example, if x=44, then 1,(44)=49.4. Altemnately, if x=47, then 1,(47)=51.2.
If x=49, then 1,(50)=53. The difference in difficuly between Form X and Form Y for a
Form X score of 44 is 5.4 (49.4 - 44) but the difference for a Form X score of 50 is 3 (53 -
50).

Sometimes, the differences in difficulty between two test forms can be displayed by
a curve rather than a straight line. In this situation, equipercentile equating may be
appropriate. In equipercentile equating the cumulative distribution function of converted
scores on Form X is equal to that of scores on Form Y. However, the estimated test score
distributions or equipercentile relationships are somewhat irregular and produce random
error. In this situation, smoothing methods may be used to reduce random error where the
random error arises from the estimation of test score distributions and equipercentile
relationship. Two general types of smoothing are used -- presmoothing and
postsmoothing. In presmoothing, the test score distributions are smoothed and in

postsmoothing, the equipercentile relationship is smoothed. Log-linear and strong-true
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score methods are often used in presmoothing and the cubic splines method is frequently
used in postsmoothing. The equating results using smoothing are expected to have better

precision than those based on unsmoothed relationships (Kolen & Brennan, 1995).

Purpose

The primary purpose of this study was to estimate the sample size required for
equating using the random groups design. The approach taken in this study was to find the
smallest sample size for which equating is expected to result in less overall equating error
than had no equating been conducted. Mean, linear,ahd equipercentile equating methods
were considered. Some of the analyses presented in this paper assumed that the test scores
are normally distributed. Other analyses are not based on this assumption. Real test data
from the ACT testing program were used to check whether the theoretical methods which
will be discussed in the following sections provide reasonably accurate results for use in
estimating sample size requirements.

The remainder of this paper is divided into four parts. The next section provides a
conceptual framework for analyzing equating error. Then, previous investigations
concerned with sample size issues in equating are discussed. The procedures used in this
study are described next. Finally, the results are presented and the implications of these

results are discussed.
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I1.A Conceptual framework for analyzing equating error

In this paper, equating is considered to be potentially worthwhile, if application of
an equating method is expected to provide less overall error than does the use of the identity
equating. In the identity equating, it is assumed that a score of 0 on Form X is equivalent to -
a 0 on Form Y, that a 1 on Form X is equivalent to a 1 on Form Y, etc. That is, in the
identity equating it is assumed that the two forms are equal in difficulty at all points along
the score scale. Consider a situation in which very few examinees took an examination. For
example, assume we could randomly assign only four examinees to take each of the two
forms. In this situation, would it be better to use the results from linear equating or would it
be better to use the identity equating ? It could be argued that the identity equating would be
preferred if it would be expected to result in less error than equating with these four
examinees. The following discussion attempts to make these concepts more explicit.

Equating error arises from the difference between the Form Y equivalent estimated
from the sample and the population Form Y equivalent. To show the components of total

error, define Ty(x,) as the population Form Y equivalent at a particular score on Form

A
X. Define ty(x,) as an estimator of Ty(x,) that results from using an equating method.

A
Define ty(x,) as equal to the expected value of t,(x,) over replications of an equating

A
method. Define total error at a particular x; as t,(x,)-Ty(x,). Define mean-squared error in
equating at x; using an equating method as
A A
MSE[t, (x)]=E[t,(x)-Ty(x)]*. 4) 3.5)
Define variance of random error in using an equating method as

A A , , : '
Var[ty(x)]= E[t,(x)-t,(x)]*. (5) (3.6)

12




Define squared systematic error, squared bias, in equating using an equating method as
(Bias; [ty(x)])" = [ty(x)-Ty(x)I’. 6) 3.7)
Total error is comprised of random error and systematic error as expressed in the

following equation
A A
ty(xi)'Ty(xi)=[ty(xi)'ty(xi )] + [tY(xi)'Ty(xi)] ’

A
where ty(X,)-ty(x;) is random error and ty(x)-Ty(x,) is systematic error.

It can be shown that mean-squared error in equating at x; is

A A
E[ty(xi)'Ty(xi)]z =E[ty(xi)'ty(xi )]2 + [t\((xi)"r\((xi)]2
A A | -
That is, MSE[ty(x,)]= Var[ty(x,)] + {Bias, [ty(x)]}’ (7) (3.8)

If the identity equating is used, then the Form Y equivalent of a Form X score is

A A .
just the Form X score. That is, ty(x;) = ty(x;) = X, . The estimate, ty(x;) , for identity

equating does not depend on the data. Thus, when using the identity equating, random

eITor variance, Var[ty(ii)] equals zero. However, the identity equating can have a large bias
component. That is, the bias of identity equating is, Bias; = ty(x;) - Ty(x;) = X;- Ty(x;), and
Bias? = [x;- Ty(x)I*.

Hence, in deciding whether to equate or not, mean-squared error can be used as the
index. If the mean-squared error for the equating method is less than the mean-squared
error for the identity equating under the assumption that the equating method does not have
any bias, then the equating method will produce less mean-squared error than the identity
equating when the random error variance for that equating method is less than the squared
bias for the identity equating. That is, when

A
Var{ty(x,)] < [x;- Ty(x)1%,



A .
where Var{t,(x,)] is the random error variance for the equating method.

To provide a single index for equating error, error variance and equating error can

be averaged over score points. Define f; as the i raw score relative frequency at Form X

and eq,(x,) is an estimated equating function that is used to convert test score x; to the scale

of Form Y which is Form Y equivalent, y;,. Hence, the average squared bias over score

points is T, f, [x, - egy(x,)]* and the average error variance over Score points is equal to

A
Z, f, Var [eqy(x))]. Thus, if

A
ZfVar [eqy(x)] < Z; f [%; - eqy(x))*, )]

then the mean-squared error for the equating method is less than the mean-squared error for
the identity equating. In this case, we might decide to use an equating method because
application of the equating method results in less total error than application of the identity

equating.

Standard errors of mean. linear. and equipercentile equating using the random groups
design

In order to rep(;rt the amount of equating error due to sampling from a specified
population, standard errors of equating are needed. The delta method (Kendall & Stuart,
1977) can be used to derive the estimated standard errors with and without normality
assumptions for various equating methods using a random groups design.

The delta method is based on a Taylor series expansion. Using this method, the

appropoximate sampling variance of an equating function is (Kolen and Brennan, 1995):

A " A AA
Var[egy(x;; 6,, 0,.....8, )] = X,eqy;” * Var (8))+ XX ,eqy,’eqy,” Cov (6,,8,), (9) (7.6)

A A
where 6, and 8, are sample estimates of parameters 6; and 6, .

14



eqy;” is the first partial derivative of eqy; with respect 10 6, .

eqy;” ” is the second partial derivative of eqy; with respect 10 6.

A
eqy (x;; 8, 0,,...,8,) is an estimated equating function (mean, linear, or

equipercentile) that is used to convert test score X; t0 the scale of Form Y which is

Form Y equivalent, y; with estimated parameters 0,,6,,....6,.

In random groups mean equating, 6, 6,,...., 6, reduces to only one 6, which is
the mean. In linear equating, 8,, 6,,...., 6, are two moments and in equipercentile
equating, 8,, 6,....., 6, are cumulative probabilities.

Once the sampling variances (Var) of 6, and sampling covariances (Cov) of the 6,

and 8, are known, the estimated variance of a equating function and the estimated standard

error of a equating function are known.
Mean Equating
The derivation of the standard errors for mean equating follows that of Kolen and

Brennan (1995), except that the final equations are modified such that N=N,=Ny. The

parameters for the sampling variance for mean equating that need to be estimated are p(X)

and 1(Y). The estimate of mean equating on Form X is

A A A
my(X,) = X; - LX) + p(Y). 10)
A A
The error variances for p(X) and p(Y) are
A ‘ A
Var[p(X)] = 6°(X)/N and Var[u(Y)] = 6*(Y)/N. an
The partial derivatives are




10

A A A A
am/du(X) = -1 and Im/ap(Y) = 1. 12)

If equations (11) and (12) are substituted into equation (9), the general form of the

sampling variance for mean equating is obtained:

A
Var[m,(x,))] = [6°(X) + 6*(Y)V/N. (13)(7.8)
Equation (13) shows that as sample size increases the standard error of mean equating,
which is just the square root of the sampling variance, decreases.

Linear Equating

The parameters of the sampling variance of linear equating that need to be estimated

are u(X), p(Y), 6(X), and o(Y). Based on Braun and Holland (1982), the general form of

the sampling variance without the normality assumption for linear equating is

A
Var[l,(x))] = [6’(Y)/N]{ 2+[sk(X) + sk(Y)][(x; - L(X))/o(X)]
+Hku(X) + ku(Y) -2)/41[(x; - pX))/S(X)P}. (14) (7.9) .

With the normality assumption for both X and Y, sk(X)=sk(Y)=0 and
ku(X)=ku(Y)=3, then equation (14) can be simplified to

A
Var([ly(x)] = [6*(Y)/N] {2 + [(x; - p(X)NoX)P). (15) (7.10)

From equations (14) and (15), the error variance for linear equating tends to
become smaller as sample size increases and as the test score on Form X becomes closer to
the test score mean of that form. For nonnormal distributions, the error variance tends to
increase as the indexes of skewness and kurtosis of the X score distribution depart from the
values of these indexes for a normal distribution.

Equipercentile Equating
In the case of equipercentile equating, the parameters that need to be estimated are

cumulative probabilities. Combining equation (10) in Lord (1982) and the notation of

16
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chapter 2 in Kolen and Brennan (1995), the general form of error variance without

normality assumptions is

Var?ey<xi>] = (1/N){1[G(y"v)-G(y u- DI H {[P(x,/100][1-P(x)/100] 2}
- {[G(y"y) - PR)/100)[P(x)/100 - G(y'y-1)] /IG(Y'y) - G('y-DI}}, (16) (7.12)
where P(x,) is the percentile rank for a score of x; Yy is the smallest integer score
with a cumulative percent 100G(y) that is greater than a given percentile rank; and
G(y'y)-G(y'y-1) represents the proportion of examinees at the scores on Form Y.
The amount of error variance for equipercentile equating without normality
assumptions increases as the proportion of examinees at the scores on Form Y, as
symbolized by G(y"y,) - G(y'y-1) decreases.
Under normality assumptions, Petersen, et al.(1989) used the two-group case and

the continuous case in Lord’s study (1982b) to develop the following equation:

A
Var{ey(x))] = [26°(Y)/NJ{[P(x;)/100][1-P(x,)/100] /¢°}, (17) (7.14)

where ¢ is the ordinate of the standard normal density at the unit-normal score, z,

below which P(x,)/100 of the case fall (Kolen & Brennan, 1995).

Minimum sample size require for equating to result in less error than the identity equating

Recall from equation (8), that the application of an equating method was considered
to be preferable to the identity equating if the average error variance for that method was
less than the bias due to the application of the identity equating. To find the minimum
sample size necéssary for this property to hold, we start by setting the average error
variance for the method equal to the average squared bias associated with the identity

equating as follows:

A .
Z, f, Var [eq,(x)] = L, f;[x, - eqy(x)]*,

ERIC 17
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where f; is the i® raw score relative frequency at Form X.
Then, note that all of the error variance expressions in Equations 13 through 17 can be
expressed as 1/N times a quantity made up of parameters (e.g., means, standard
deviations, percentiles). Refer to the quantity apart from the 1/N term as NVAR. In this
case, Var=NVAR/N, so that the preceding equation is the same as

A
(1/N)Z, £, NVAR [egy(x)] = Z; f; [x; - eqy(x))*.

Solving for N, we have

A
N=Z, f, NVAR [eqy(x)] / Z; f; [x; - eqy ()]’

which is the sample size required for average error variance for an equating method to be
equal to the average squared bias for the identity equating. A sample size larger than N will
result in the equating method having less average error variance than the identity equating.
In this way, we have a method for finding the minimum sample size required for an
equating method to result in less error than using the identity.

Following this logic, we can obtain sample size estimates for each of the equating

methods as follows, -

Mean Equating
A
N = X f, [6*(X)+6* (V)] / X, £, [x; - my(x))*. (18)
Line atin

A.Under nonnormality assumptions:

N = I, f, { 2(Y) {8 + 4z, [sk(X) + sk(Y)] + z,? [ku(X) + ku(Y) -2] }/4}

A
1 Z 5 [x, - 1,(x))° . (19)

Because z_ =[x,-p(X)/6(X)], sk(X), sk(Y), ku(X), and ku(Y) are all constants N can be
computed from equation (19). In the case of linear equating, sample size per form depends

on the characteristics of the test score distributions such as sk(X), sk(Y), ku(X), and

ku(Y).

18
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B. Under normality assumptions:
N=I f[c%(Y)(2+ )]/ Z £ [x -II\Y(xi)]’. ' (20)
uipercentile Equatin
A.Under nonnormality assumptions:

N=Z, f, {1/ [G(yy)-G(yy - DI { [P(x)/100])(1-( P(x))/100)] 2 [G(yy)- Glyy DI }-

(G - (Pa)100)] [ (P(x)/100) - Gy, -1} }} / Z, £ [x, -Qy(xi)lz. 1)
Because G(y'U) - G(y'y -1), and P(x;) are all constants, N can b¢ computed from
equation (21). The sample size per form depends on G(y'y) - G(y'y -1) which is the
proportion of examinees at scores on Form Y.

B. under normality assumptions

A
N =3, £ { 2 62(Y) [P(x)/100][1-P(x)/100)/ ¢ } / Z; f;[x; - ey(x))". 22)

Theoretical Methods
The equations that follow give the minimum sampie size requirements so that the
average error variance for equating is less than mean-squared error for the identity
equating. These expressions are given for various equating methods under normality
assumptions using the randbm groups design.
ean Equatin

Average of Variance = _L {([6*X) + 6°(Y)} / N} g(z) dz

={[’X) + 6’ (Y)]/ N} L g(z) dz
= [X) +’(M]/N
=206XY)/N,
where z is a unit-normal variable
g(z) is the probability density function of z.
z, = [x- 1) o(X)
In this equality, 0*(X) is set to equal to 6°(Y). Moreover, the integral equals one

ERIC 19
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because g(z) is the probability density function of z integrated over its range. If u is taken to
be the maximum proportion of standard deviation units of Form Y that is judged to be
appropriate for the standard error of equating, then u’ = 2/N and N= 2/u” . If the two
sample sizes are equal then

N, = 4/ (23)
Linear Equating

Average of Variance = _L [G*(Y)2] [ /N, + 1/N,] [2+2,7] g(z) dz

= [6*(Y)/2] [ 2/N] L [2+2,7] g(z) dz

= [6*(Y)N] [ 2 f. 8(z) dz + f 7, g(z) dz ]
= 3 64Y)/N
In this equaiity, the first integral equals one because g(z) is the probability density

function of z integrated over its range. The second integral equals one because the
variance of a unit-normal variable z equals one, and this integral represents the variance. If
u is taken to be the maximum proportion of standard deviation units of Form Y that is
judged to be appropriate for the standard error of equating, then w? = 3/N and N=3/u’. If
the two sample sizes are equal then

N, = 6/u? (24)

Equipercentile Equating
To set up average variance and minimum sample sizes required in the equipercentile

equating, first we divide the test score distribution into several parts at i =-3, -2.5,-2,-1.5,

-1,-05,0,0.5, 1, 1.5, 2, 2.5, 3. Second we let ¢, be the normal density at i = -3, -2.5, -2,
-15,-1,-0.5,0,0.5, 1, 1.5, 2,2.5, 3 and then standardized ¢, such that the densities sum

to 1(i.e.; f,"=¢,/Z; ¢, and Z,f," = Z, [¢,/ Z; ¢,] = 1.). Hence, from equation (17) we get

20
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Average of Variance = [QS*(Y)N] Z; £, [ P, (1-P)/ ¢,2.If u is taken to be the maximum
proportion of standard deviation units of Form Y that is judged to be appropriate for the
standard error of equating, then v = [2/N] {Z; ;" [ P; (1-P})/ ¢,’1}and

N= [20?] {Z, £ [ P; (1-P)/ ¢;%]} . If the two sample sizes are equal then

N, =4Z f' [P, (1-P) ,21/u*, where P, is the probability at i (25)

An alternative theoretical approach is to derive the minimum sample size
requirements based on z-scores of -2 and +2. In this approach, the minimum sample size is
taken as that sample size for which equating produces less overall equating error than the

identity equating at z= -2 and +2.

Mean equating

A

var[my(x;)]=[6*(X)+6*(Y)V/N

w2 oY) =[6*(X)+6*(Y)VN

N = [63(X)+62(Y))/ [*6*(Y))= (1/u)[1+ (6°X)/6*(Y)))

sihce zy=2 x-W(X)=20(X)
y-1(Y)=20(Y)
set  x-pX)=20(X)=y-p(Y)=20(Y); o(X)=0(Y)

N, = 4’ (26)

Linear equating

N, = (2/u?)(2+2%; ), where 2,=2-

N, = 12/ | @7)
Equipercentile ga_q- vating

N, = 4[P(x)/100][1-P(x)/100)/[u? ¢* ] = 30.5626/ v’ ,

where z,=2, P(x,)=.9772, ¢ =.0540 _ (28)

2l




In order to estimate the equating relationship for a specified population, sampling
from that specified population is required, and random error is present. Hence, it is
obvious that the standard errors of equating decrease as the sample sizes increases.
However, systematic errors are not necessarily related to sample size. That is, systematic
errors arise from the differences between the equating using the identity and the equating

using other equating methods in the random groups design.

el
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II1.Review of the literature

In this section, several studies that investigated the standard errors for various
equating designs are reviewed. These studies focused on the use of small samples. At the
end of this review, the importance of the results obtained from these studies for the current

investigation is considered.

Livingston

The purpose of the Livingston (1993) study was 1o investigate how log-linear
presmoothing procedures can be used to improve the overall accuracy of equating using the
common-item nonequivalent groups design. Form X and Form Y were selected from a
100-item test with 58 noncommon items and 24 common items on each form. ann X was
to be equated to Form Y by a chain equipercentile equating. The 24 common items on both
forms mirrored the content distribution as similarly as possible, while differing
systematically in difficulty. The data were taken from the responses of 93,283 test takers.
Each of those 93,283 test takers had a score on each form and a score on the 24 common
items. Then, a direct equipercentile equating of test score distributions on both forms in the
population of 93,283 examinees was conducted as a criterion equating for assessing the
results of the equatings based on samples from the population. Anchor equatings were
performed with samples of 25, 50, 100, and 200 test takers. For each sample size, a pair of
samples was used to create unsmoothed distributions. Two-moment, three-moment, and
four-moment smoothing methods were used with the joint distribution of scores on the 58
noncommon-items and the 24 common-items over 50 replications of the equating

procedure. The accuracy of equating was assessed in terms of the root-mean-squared

A
deviation (RMSD) defined as follows: Let x represent a score on Form X. ey(x;) represent a

score x on Form X transformed to the scale of Form Y in the direct equipercentile equating

23
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in the population. Let ey,(x;) represent the score on Form Y that equates to X in the jth
replication of the anchor equipercentile equating. Then, RMSD(x) is equal to:

A
RMSD (x) = square root { [Z; (ey,(x) - ey(x))/R] },

where j=1,2,3,...,50 and R=50
Based on Livingston’s definition and equation, RMSD is very similar to the estimated
bootstrap standard errors of equating.
The results from Livingston’s study show that the two-moment, three-moment, and
four-moment smoothing methods significantly improved the equating as compared to the
“unsmoothed method. Regardless of sample size, the three-moment smoothing method had
the smallest RMSD. It produced the most accurate results relative to the unsmoothing

‘method.

Parshall. Houghton. and Kromrey (1995)

Parshall, Houghton, and Kromrey (1995) compared standard errors of equating for
five subject matter tests using linear equating and a common-item nonequivalent groups
design. Each subject test had two parallel forms (Form X and Form Y). Samples of 15, 25,
50, 100, and 500 were randomly selected with replacement for 1000 replications. For each
pair of Form X and Form Y tests at each size level, they estimated the linear equivalent at x;

A
and referred to this estimate as 1y,(x,). This procedure was repeated 1000 times and

A A A
bootstrap estimates ly,(X,), ly2(X),-.., ly;000(X;), Were obtained. The accuracy of equating

was evaluated by computing bootstrap standard errors of equating. The standard errors of
linear equating were the standard deviations of the obtained linear equated scores X; in the
bootstrap samples. Then, the estimated standard errors were defind as

AA ' A A
SE[l,(x,))] = square root {Z, [ly,(x) - 1, ®x)F*/ (R-1) },

R4
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A A A
where SE[1,(x,)] is standard error for equated score x,, 1y,(x,) is obtained equated

A .
score X; in jth replication, 1, (x, ) is mean equated score x; over the 1,000

replications (R=1000).

The results for each of the five tests showed that the standard errors decreased near
the mean raw score and increased farther away from the mean raw score. As the sample
size increased the standard error became smaller. There was a tendency in the larger

samples for the standard error curves to rise less sharply than for smaller samples.

Lord (1982)

In the Lord (1982) study, he derived the standard error of equipercentile equating
for four different situations: (1) scores x and y are continuous in the random groups design;
(2) scores x and y are positive integers in the random groups design; (3) scores x and y are
positive integers in the single group design; (4) scores x and y are continuous in the single
group design. Situations (1) and (2), which deal with the random groups design, are
related to this paper. In situation (1), one thousand students who had scores x and y on
parallel Forms X and Y were randomly drawn from a population. From these 1000

A
students the equated score, ey(x;), was computed at x; =0, 0.5, 1.0, 1.5, 2.0, 2.5

(repeated 1000 times for each x; ). Lord used an equation equivalent to equation (17) when
N=N,=N,=1/2 N, to compute “standard errors of equipercentile equating for normally
distributed variables.’” The results showed that the size of the standard error along the X

~ score scale was “acceptably” small.

Kolen (1985)
Kolen (1985) derived large sample standard errors for the Tucker method of linear

equating with and without normality assumptions in the common-item nonequivalent
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groups design. He used a computer simulation and a real data example. The bootstrap
method was used to verify the accuracy of the derived standard errors.

A computer simulation was conducted to study the estimated standard errors. To
mirror the score distributions of test forms from two different testing programs, score
distributions were simulated. The simulation included a nonsymmetric simulation and a
nearly symmetric simulation. For the nonsymmetric simulation the score distributions for
the two test forms modeled those of a particular professional certification testing program.
For these simulations the score distributions were negatively skewed.The nearly symmetric
simulation modeled score distributions that were symmetrical. Simulations were conducted
for two sample sizes: 100 examinees per form and 250 examinees per form.The delta
method w1th the nonnahty assumptxon and thhout the normahty assumpuon was used to
estimate standard errors of equating for each X score. The standard dev1at10n of Form Y
equivalents of a given X score over the 500 replications was defined as the “true” standard
error of equating. The mean delta method standard error based on the normality assumption
over the 500 replications was defined as the normal delta method standard error associated
with each X score. The nonnormal delta method was defined similarly.

The results indicated that the standard errors became larger at the extremes and
smaller near the mean X score. The standard errors also decreased as sample size
increased. For both simulations, the standard errors based on the nonnormality
assumptions were more accurate than the standard errors based on the normality
assumptions.

Root mean squared errors (RMSE), a measure of the variability in estimating
standard errors, was defined as follows.

“The variance of the estimated standard errors over the 500 replications was

computed and added to the squared difference between the “true” standard error and

the delta method standard error. The square root of this sum is RMSE.”

Do
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The RMSE was smaller for the nonnormal standard errors than for the normal
standard errors except for the nearly symmetric simulation with sample size of 100.

The bootstrap standard error was also used to evaluate the accuracy of the standard
errors. The bootstrap standard error was defined as the standard deviation of the obtained
equated scores over replications. Real data from Form X and Form Y (each form had 125
noncommon-item and 30 common-item) were used. 773 examinees from population 1 took
Form X and 795 examinees from population 2 took Form Y.

The results from this real data example illustrated again that the standard errors
became larger at the extremes and smaller near the mean X score. Standard errors derived
from the delta method without the normality assumption were very similar to those derived
from the bootstrap method. In addition, at the higher scores, the standard errors under the
normality assumption were slightly larger than those derived with nonnormality
assumption; whereas, at the lower scores, the standard errors under the normality
assumption were slightly smaller than those derived with nonnormality assumption.

In summary, the results from the computer simulations illustrated that the standard:
errors based on nonnormality assumptions were more accurate than those based on normal
assumptions, particularly for large samples. The results from the real data example
provides evidence that the bootstrap standard errors are very similar to the delta method

standard errors without the normality assumption.

Summary

Some important results from these related studies are discussed below.

Livingston (1993) and Parshall, Houghton, Kromery (1995) used the bootstrap
method to deal with standard errors of equating while Lord (.1982), and Kolen (1985) used
both the delta and bootstrap methods to derive standard errors of equating. In the Kolen
(1985) study the standard errors derived from the delta and bootstrap methods were very

similar for both linear and equipercentile equating of number-correct scores when a large

e
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number of bootstrap replications are used (i.e., 1000 replications). Based on the foregoing
empirical studies, the bootstrap method and the delta method standard errors can be
expected to be similar.

As expected, as the sample size becomes larger, standard errors become smaller.
This outcome was illustrated in the Livingston (1993), Parshall, Houghton, Kromery
(1995), and Kolen (1985) studies for the common-item nonequlvalent groups design.

In the Livingston (1993) study, the log-linear presmoothing method did improve
the overall accuracy of equating as compared to no smoothing. However, for
presmoothings, the highest degree of presmoothed distributions did not always produce
the most accurate equating.

Parshall, Houghton, Kromery (1995) and Kolen (1985) observed larger standafd
errdrs of eduating af scdre points deviating ffofn the mean |

Only Kolen (1985) and Lord (1982) considered standard errors of equating under
both normality and nonnormality assumptions. In the current study, both normality and
nonnormality assumptions are considered. In practice, score distributions may not meet the
normality aséumptjoh; In real situations, it is appropriate to derive the standard errors under
the nonnormality assumption. Moreover, the studies reviewed considered the standard
error of equating in the common-item nonequivalent groups design but they did not
simultaneously use mean, linear, and equipercentile equatings to compute standard errors
of equating for a random groups design. This study considers the magnitudes of standard
errors and minimum sample sizes required for mean, linear, and equipercentile equatings in

the random groups design.
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IV.Procedures

The procedures used both to investigate the standard error at selected score points
for various sample sizes under different equating methods and to investigate what sample
sizes are needed to obtain equating error values less than the identity equating values are
described below.

1. For selected raw score distributions, select an approptiate C value, the order of

a polynomial log-linear model used to fit each raw score distribution.

2. Equate each of these distributions to the old form using the smoothed

distributions and equipercentile equating.

3.Estimate what the standard error would be at selected score levels for van'ousb

sample sizes per form-- 25, 50, 100, 200, 500, and 1,000 using the square root of

equations (13), (14), and (16) for mean, linear, and equipercentile equating with
nonnormality assumptions, respectively over the all Form X raw score poinis

and using the square root of equations (13), (15) and (17) for mean, linear, and

equipercentile equating with normality assumptions, respectively over all Form X

raw score points.

4. Estimate what the minimum sample size needs to be to reduce equating error

relative to the identity equating using equations (18), (19) and (21) for mean, linear

and equipercentile equating with nonnormality assumptions.

5.Estimate what the minimum sample size needs to be to reduce equating error

relative to the identity equating using equations (18), (20) and (22) for mean, linear |

and equipercentile equating with normality assumptions.

6. Estimate what the minimum sample size needs to be to reduce equating error

relative to the identity equating using equations (18) through (22), for mean, linear

and equipercentile equating with nonnormality and normality assumptjdns for real

data.
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7. Compare the results from Method 1 [The u values are derived from real data and
these values are used in equations (23) through (25).] with those from Method 2

[equations (18), (20), and (22) are used and do not require a u-value.).?

2Method 1 and Method 2 are defined in the next section.

Q 30
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V.Results

The science subtest of the ACT Assessment provided the basic data for
investigating the standard errors of equating and the minimum sample sizes needed to
obtain less equating error than the identity equating. This test was selected because the
score distributions tend to vary across test forms. Table 1 gives descriptive statistics for
each of the three forms used in this study. Form Y is considered the old form and Forms X
and Z are considered the new forms for investigating standard errors of equating and
minimum sample size requirements under mean, linear, and equipercentile equating.

As can be seen in Table 1, Forms X and Z are both slightly more difficult and |
slightly less variable than Form Y. Also, the score distribution for Form X is positively
skewed and the Form Z distribution is negatively skewed. The Form Y distribution is also
negatively skewed. All three score distributions have kurtosis values less than 3.0.

Table 1 also shows the moments and fit statistics for presmoothing on Form Y,
Form X, and Form Z. The next-to-last column shows the likelihood ratio chi-squared
statistics (with degrees of freedom) for each C-value. This chi-squared test is an overall
goodness-of-fit test that compares the fitted log-linear model to the empirical score

distribution. The log-linear model is assumed to fit the empirical score distribution if this

chi-squared test is not statistically significant at the given o.. For example, %*(33) = 21.996

at C =7 on Form Y means that the log-linear model with polynomial of degree 7 fits the

empirical score distribution because 21.996 is smaller than the chi-squared table value at

0=0.05 with df=30 (43.77). The last column at the right provides a difference statistic,
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Xc - X’c.1» With one degree of freedom. °. - %7, is the difference between the overall

¥ at C and the overall 2 at C+1. If y%. - x’.,, is statistically significant, then the log-

linear model with C+1 improves the fit over that of the model with C.

The C-value for Form Y is 7 because its chi-squared value with df=33 (21.996)

was smaller than the chi-squared table value at 0=0.05 with df=30 (43.77) and its

difference chi-squared value with df=1 (2.23) is smaller than the chi-squared table value

with df=1 at =0.05 (3.841). C-values of 8 for Form X and 6 for Form Z were selected

based on a similar analysis. Figure 1,2,and 3 show the fit of the smoothed distributions to

the actual raw score distributions.

Standard Errors
Mean Equating

For mean equating, the standard error at all score points is the same. The results
reported in Table 2 are based on equation (13). The values of the standard errors for the
sample sizes of interest in this study are provided in Table 2. As expected, the standard
errors decrease as sample size increases for both Form X and Form Z. However, the
standard error for Form Z is greater than the standard error for Form X for all sample sizes.
Linear Equating

Tables 3 and 4 provide the standard error values for linear equating based on
equation (14) [nonnormality assumption]. Tablés 5 and 6 give the standard errors for linear
equating based on equation (15) [normality assumption]. Figures 4 through 7 provide a
graphical representation of these standard errors. Again, the standard errors decrease as
sample sizes increase for both Form X and Form Z. However, unlike mean equating, for
linear equating, the standard error becomes less as the raw score value approaches the mean

score.
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Four different situations are discussed below: (1) Table 3 vs Table 4 -- across
forms within nonnormality assumptions; (2) Table 5 vs Table 6 -- across forms within
normality assumptions; (3) Table 3 vs Table 5 -- across conditions within Form X; and (4)
Table 4 vs Table 6 -- across conditions within Form Z.

In situation (1), Form X has the smaller standard errors relative to the standard
errors for Form Z over the range of raw scores between 0 and 24 for all sample sizes.
However, Form X has the larger standard errors relative to the standard errors for Form Z
over the range of raw scores between 25 and 40 for all sample sizes.

In situation (2), Form X has the smaller standérd errors relative to the standard
errors for Form Z over the range of raw scores between 0 and 23 for all sample sizes.
However, Form X has the larger standard errors relative to the standard errors for Form Z
over the range of raw scores between 24 and 40 for all sample sizes.

For both situation (3) and (4), standard errors based on the nonnormality
assumption are smaller than standard errors based on the normality assumption at all score
points for all sample sizes.

Equipercentile Equating

Tables 7 and 8 give the standard error values based on equipercentile equating using
equation (16) [nonnormality assumption]. The standard error values in Tables 9 and 10 are
based on equation (17) [normality assumption]. Figures 8 through 11 provide standard
error values for both Form X and Form Z and for both conditions®. Again, the standard
errors decrease as sample size incfeases for both forms and under both with nonnormality
and normality conditions.

As before, four different situations are discuésed below: (1) Table 7 vs Table 8 --

across forms within nonnormality assumptions; (2) Table 9 vs Table 10 -- across forms

* No standard errors are given for raw scores 0 and 1 in Tables 7 through 10. These points have very small
standard errors -- almost “0". Figures 8 through 11 delete raw scores with percentile ranks less than 0.5.
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within normality assumptions (3) Table 7 vs Table 9 -- across conditions within Form X;
and (4) Table 8 vs Table 10 -- across conditions within Form Z.

In situation (1), Form X has smaller standard errors relative to the standard errors
for Form Z over the range of raw scores between 15 and 40 (except for raw scores of 35,
36, 38) for all sample sizes. Over the range of raw scores between 3 and 7 on Form X and
over the range of raw scores between 4 and 8 on Form Z very large standard errors occur.
[For Form X, over the range of raw scores between 3 and 7 the values of G(yy*) - G(yy*-
1) are smaller than 0.002 and their percentile ranks are smaller than 0.2. For Form Y, over
the range of raw scores between 4 and 8 on Form Z, the values of G(y,*) - G(yy*-1) are
smaller than 0.0006 and their percentile ranks are smaller than 0.08.] For Form X, as the
raw score values approaches 40 (except for raw scores of 35, 36, and 38), the standard
error decreases. For Foﬁn Z, as the raw score values approaches 40 (except for raw scores
of 34, 37, and 39), the standard error decreases.

In situation (2), Form X has smaller standard errors relative to the standard
errors for Form Z both over the range of raw scores between 7 and 17 and over the
range of raw scores between 19 and 23 for all sample sizes. However, Form X has
larger standard errors relative to the standard errors for Form Z at other score points for all
sample sizes.

In situation (3), the standard errors under the nonnormality assumption are smaller
than the standard errors under the normality assumption over the range of raw scores
between 27 and 40 for all sample sizes. On the other hand, nonnormality assumption has
the larger standard errors relative to normality assumption over the range of raw scores
between 2 and 26 for all sample sizes.

In situation (4), the nonnormality assumption results in smaller standard errors
relative to the normality assumption over the range of raw scores between 29 and 40 for all

sample sizes. However, the nonnormality assumption results in larger standard errors
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relative to normality assumption over the range of raw scores between 2 and 28 for all

sample sizes.

Sample Sizes Required

Table 11 shows the sample size required so that a particular equating produces less
overall equating error than the identity equating. The values in Table 11 are based on
equations (26), (27), and (28) assuming normality. As an illustration of the interpretation
of the data in Table 11 consider the row with standard deviation unit equal to 0.1. The
values in this row represent the sample sizes required so that over the range of Form X z-
scores between -2 and 2, the standard error of equating will be less than 0.1. Thus, for
example, for mean equating a sample size of 400 is required in order for this procedure-to
provide less error than the identity equating when u=0.1. For u=0.1, equipercentile
equating requires a sample size about three times as large as that required for linear equating
and requires almost eight times as many examinees as mean equating.

Table 12 provides similiar information, except that the values in Table 12 were |
derived using equations (23), (24), and (25). Again, it can be seen that equipercentile
equating requires considerably greater sample sizes than linear equating and mean
equating.*

In mean equating, the sample size required remains the same for all standard units
regardless of which method is used. (See Tables 11 and 12.) However, the sample size
required with linear equaﬁng using the average variance criterion is only one-half that
required for the +2/-2 cﬁterion. Likewise, the sample size required in equipercentile

equating for the average variance criterion is consistently less than the sample size based on

‘ The major difference between the two theoretical methods used to obtain the values in Tables 11 and 12 is
described below. As mentioned, the rationale for deriving equations (26) through (28) was to identify the
sample size needed at z = +2 and / or -2 for a specific u value. The rationale for the other theoretical method
based on equatioris (23), (24), and (25) was to identify the sample size needed so that the average error
variance for equating is less than mean-squared error for the identity equating for a specific value of u.
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the +2/-2 criterion. As indicated in Tables 11 and 12, equipercentile equating requires larger
samples than either linear equating or mean equating.

The minimum sample size requirements based on real data are summarized in Table
13. The values in Table 13 are based on the ACT science test scores and equations (18),
(19), (20), (21), and (22). The minimum sample size requirements for mean equating to
have less error than the identity equating on Form X and Form Z are 22 and 81,
respectively [equation (18)]. The minimum sample size requirements for linear equating to
have less error than identity equating for Form X and Form Z under nonnormality /
normality assumptions are 29, 89, 32, and 99, respectively [equation (25)]. Finally, the
minimum sample size requirement for equipercentile equating to be better than the identity
equating for Form X and Form Z under nonnormality / normality assumptions are 44, 145,
51, and 161, respectively. For each equating method, Form Z requires larger sample sizes
than Form X under both conditions. If normality assumptions are made, greater sample
sizes are needed relative to the nonnormality assumptions for these tests.

To evaluate whether the theoretical methods (assuming normality assumption)
provide reasonably accurate sample size estimates, equations (23), (24), and (25) were

used. The u? values needed in these equations were estimated using the following formula;
{Z. 60 -e,(x)P}/ 62 (Y) =u? . (29)
Table 14 shows both the theoretical sample size estimate (Method 1) and the sample
size estimate based on the actual equating (Method 2). As can be seen in Table 14, the

sample size estimates derived from the actual equating are approximately the same as the

estimates based on the theoretical models.
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V1.Discussion and Conclusions

Based on real data, in general, as the sample size increases, the magnitude of the
standard errors decreases for both forms. ( E.g., the smallest standard errors are found at
n$1000; whereas, the largest standard errors are found at n=25.) In linear equating, the
standard error becomes less as the raw score value approaches the mean score. In
equipercentile equating, with nonnormality assumptions, raw scores less than or equal to
10 are associated with greater standard errors but the standard errors become smaller as the
raw score approaches the middle score. For both forms, standard errors associated with
normality assumptions have the smallest standard errors over the range of raw scores
between 20 and 26 and have the largest standard errors at extreme score points. Based on
these results, it is reasonable to conclude that standard errors become less as sample size
increases and that they tend to be less for middle scores than the extreme scores for both the
linear and equipercentile methods.

As shown in Tables 11 and 12, the two theoretical methods for deriving minimum
sample size estimates do not provide the same estimates for either the linear or
equipercentile method. As can be seen given equations (23) and (26), the minimum sample
size estimates are the same in mean equating. However, for linear and equipercentile
equating, equations (24) and (25) are derived so that the average error variance (over the
z-range -3 to +3) for equating is equal to the average-squared bias. Whereas, equations
(27) and (28) are derived so that the standard error of equating at a z value of -2 and +2 is
equal to u standard deviation units on Form Y. Thus, it is not surprising that the sample
size estimates based on equations (27) and (28) are greater than those based on equations
(24) and (25).

The minimum sample size requirements for equating to result in less overall
équating error than the identity equating for real data were provided in Table 13. For each

equating method, Form Z requires a greater sample size than Form X under all conditions.
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The reason why Form Z requires a larger sample size than Form X is because the mean,
standard deviation, skewness, and kurtosis of raw score distributions, provided in Table 1,
between Forms Z and Y (24.35 vs. 25.92; 6.56 vs. 7.55; -0.17 vs. -0.28; 2.44 vs. 2.30)
are closer to one another than those for Forms X and Y (22.9 vs. 25.92; 6.25 vs. 7.55;
0.12 vs. -0.28; 2.45 vs. 2.30). That is, Forms Z and Y are more similar to one another
than Forms X and Y. Moreover, a greater sample size is needed under normality
assumptions than under nonnormality assumptions for linear and equipercentile equating

methods. Comparing equation (19) to (20), the magnitude of {8+ 4z, [sk(X)+sk(Y)]+ z?

[ku(X) +ku(Y) -2] }/4 in equation (19) is small relative to 6*(Y) (2 +z.2) in equation

(20), so a greater sample size is needed under normality assumptions than under
nonnormality assumptions for linear equating. That is, kurtosis plays an important role
here. Similarily, the magnitude of

{1/ [G(yy")-G(yy - DI [P(x)/100][1-( P(x,)/100 )] 2 [G(yy)- G(yy-1)] }-

{[G(yy) - (P(x)/100)] [ (P(x,)/100) - G(y,,™-1)] }} in equation (21) is small relative to
{2 6(Y) [P(x,)/100][1-P(x,)/100)/ ¢? }in equation (22), so a greater sample size is needed

under normality assumptions than under nonnormality assumptions for equipercentile
equating. That is, G(y',) - G(y’y, -1), which is the proportion of examinees at scores on
Form Y, plays an important role here. As compared to mean and linear equating, the
eqﬁipercenti]e equating method requires greater sample sizes.

Two different methods were used to estimate the minimum sample size using real
data. Method 1 requires u-values to be estimated from the data; whereas, Method 2 does

not require the use of a u-value. If the sample size estimates obtained from these two

methods are similar, then setting the average error variance equal to u* x 6*(Y) (Method 1) -

is consistent with setting the average error variance equal to the average squared bias

(Method 2). As can be seen in Table 14, the minimum sample size requirements for both
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forms under Method 1 and Method 2 are similar . Thus, it seems reasonable to set the

average error variance equal to the average squared bias or to set the average error variance

equal to u? x 6*(Y) for all three equating methods.

Two other approaches to sample size estimation that assume that the scores on
Form X are normally distributed have been discussed in Kolen and Brennan (1995). One
approach is to choose a sample size so that the standard error of equating is small relative to
the standard deviation (Method 3). Another approach chooses a sample size so that the
standard error of equating is small relative to the standard error of measurement (Method
4). The following paragraphs summary these alternative approaches from Kolen and
Brennan (1995) and illustrate and discuss how these alternative approaches be used and

contrasted with Method 1 and Method 2 for this study.

Linear Equatingwith the random groups design: .
Consider equation (7.10). Let u is the maximum number of Form Y standard

deviation units allowed for equating and equation (7. 10)' can be written as

v’ 6X(Y) = [6*(Y)/N] {2 + [(x; - p(X))o(X))*).
Then, N = {2 + [(x; - p(X))Vo(X))*)/ v?.

Therefore, N, =2 {2 + [(x; - LX))/S(X))*}/ v’. (30)(7.18)

Thus, N, is the total sample size required for the standard error of equating to be equal to
u standard deviation units on Form Y. To illustrate how this approach can be used on real
data in this study, let u equal 0.44. Then, the total sample size required over the range of
Form X z-scores between +2 and -2 is 62, based on equation (7.18), which is a larger
sample size requirement than either Method 1 (31) or Method 2 (32) as shown in Table 14.
Thus, at least 62 examinees would be needed over the range of Form X z-scores between

+2 and -2 provided the standard error of equating will be less than 0.44 Form Y standard
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deviation units using linear equating based on real data under this approach. Similarly, let u
equal 0.25. Then, the total sample size required over the range of Form Z z-scores between
+2 and -2 is 192, which leads to larger sample size requirements than Method 1 (96) and
Method 2 (99) as shown in Table 14. Thus, at least 192 examinees would be needed over
the range of Form Z z-scores between +2 and -2 provided the standard error of equating
will be less than 0.25 Form Y standard deviation units using linear equating based on real
data under this approach.

uipercentil ating:

- Consider equation (7.14) and use the same rationale that was used with linear

equating then N can be written as

N = 2{[P(x,)/100][1-P(x,/100] }/ u* ¢*.

Therefore, N, = 4{[P(x,)/100][1-P(x,)/100] }/ u®¢. (31 (7.19)

For example, based on real data in this study, if u=0.45 then the total sample size required
over the range of Form X z-scores between +2 and -2 is 151 based on equation (7.19),
which leads to larger sample size reqliirements than Method 1 (60) and Method 2 (51) as
shown in Table 14. Thus, at least 151examinees would be needed over the range of Form
X z-scores between +2 and -2 provided the standard error of equating will be less than
0.45 Form Y standard deviation units using equipercentile equating based on real data
under this approach. Similarly, if u=0.25 then the total sample size required over the range
of Form Z z-scores between +2 and -2 is 489, which leads to larger sample size
requirements than Method 1 (193) and Method 2 (161) as shown in Table 14. Thus, at least
489 examinees would be needed over the range of Form Z z-scores between +2 and -2
provided the standard error of equating will be less than 0.25 Form Y standard deviation

units using equipercentile equating based on real data under this approach.
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This approach which chooses a sample size so that the standard error of equating is
small relative to the standard deviation (Method 3) will lead to larger sample size
requirements than Method 1 and Method 2 for Forms X and Z provided in Table 14.
Method 4:

This approach chooses a sample size so that the standard error of equating is small
relative to the standard error of measurement. Thus, the relationship between standard error
of measurement units (u,,,) and the maximum number of Form Y standard deviation units
allowed for equating (u) needs to be explored.

First, recall the relationship between the standard error of measurement (sem) and

Form X score reliability. That is,

sem = o(Y) x square root of [1 - p(X,Y) ], 3D

where p(X,Y) is alternate forms reliabiﬁty
Then, equation (31) can be written as

v, X sem =y X {o(Y) x square root of [1 - p(X,Y)] }
From the earlier definition of u,

u,. X square root of [1 - p(X,Y)] =u. (32)

Thus, once p( X,Y) and usem are known then u can be computed and equations (7.18) and

(7.19) can be used for estimating the total sample size required using linear and
equipercentile equating with the random groups design.

The other practical issue in sample size determination is to hypothesize extent to
which two forms differ in terms of u. For example, in Table 11, the sample size required is
determined by a given level of equating precision. That is, the investigator has to decide on
the appropriate magnitude for u. In order to answer thi§ question, the investigator can

examine test forms from similar testing programs. For instance, if two forms differ by a
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maximum of 0.2 Form Y standard deviation units in a similar testing program, then the

investigator might select u=0.2.
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Table 1. Moments and Fit Statistics for Presmoothing
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Table 2.Standard error of mean equating for Form X and Z

40

Sample size \ Form Form X Form Z
Ny, =Ny= 25 1.9605 2.0006
Ny =Ny = 50 1.3863 1.4147
Nyz =Ny = 100 0.9803 1.0003
Nyz =Ny = 200 0.6931 0.7073
Nyz =Ny = 500 0.4384 0.4474
Ny =Ny =1000 0.3100 0.3163
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Table 3. Standard error of linear equating on Form X under nonnormality assumptions

>

ot
N=OWOIAAUNEWND=O

Ny=N,=25

5.19646514
5.01422056
4.83342577
4.65425259
4.47689359
430157392
4.12855340
3.95813352
3.79066508
3.62655697
3.46628650
3.31041111
3.15958133
3.01455463
2.87620896
2.74555446
2.62374037
2.51205308
2.41189982
232477177
2.25218110
2.19557022
2.15619814
2.13501877
2.13257422
2.14892843
2.18365907
2.23590997
2.30448970
2.38799185
2.48491254
2.59374797
2.71306462
2.84154248
2.97799608
3.12137959
3.27078177
3.42541518
3.58460289
3.74776460
3.91440341

Ny=Ny=50

3.67445574
3.54558936
3.41774814
3.29105357
3.16564182
3.04167209
2.91932810
2.79882306
2.68040499
2.56436303
2.45103469
2.34081414
2.23416139
2.13161202
2.03378686
1.94140018
1.85526461
1.77628977
1.70547072
1.64386188
1.59253253
1.55250259
1.52466232
1.50968625
1.50795769
1.51952187
1.54408014
1.58102710
1.62952029
1.68856523
1.75709851
1.83405678
1.91842639
2.00927396
2.10576122
2.20714868
2.31279197
2.42213430
2.53469701
2.65006976
2.76790119

Ny=N,=100

2.59823257
2.50711028
241671321
2.32712629
2.23844680
2.15078696
2.06427670
1.97906676
1.89533254
1.81327849
1.73314325
1.65520555
1.57979067
1.50727732
1.43810448
1.37277723
1.31187018
1.25602654
1.20594991
1.16238588
1.12609055
1.09778511
1.07809907
1.06750938
1.06628711
1.07446422
1.09182953
1.11795498
1.15224485
1.19399593
1.24245627
1.29687398
1.35653231
1.42077124
1.48899804
1.56068980
1.63539089
1.71270759
1.79230144
1.87388230
1.95720170

Ny=N,=200

1.83722787
1.77279468
1.70887430
1.64552678
1.58282091
1.52083605
1.45966405
1.39941153
1.34020249
1.28218151
1.22551735
1.17040707
1.11708069
1.06580601
1.01689343
0.97070009
0.92763230
0.88814488
0.85273536
0.82193094
0.79626626
0.77625130
0.76233116
0.75484312
0.75397885
0.75976093
0.77204007
0.79051355
0.81476015
0.84428262
0.87854926
0.91702839
0.95921320
1.00463698
1.05288061
1.10357434
1.15639598
1.21106715
1.26734850
1.32503488
1.38395060
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Ny =N, =500

1.16196493
1.12121380
1.08078701
1.04072252
1.00106384
0.96186117
0.92317260
0.88506556
0.84761848
0.81092279
0.77508523
0.74023043
0.70650386
0.67407491
0.64313988
0.61392464
0.58668618
0.56171214
0.53931720
0.51983477
0.50360300
0.49094443
0.48214056
0.47740471
0.47685809
0.48051501
0.48828101
0.49996467
0.51529956
0.53397121
0.55564334
0.57997968
0.60665969
0.63538822
0.66590017
0.69796170
0.73136904
0.76594612
0.80154157
0.83802564
0.87528721

Ny=N,=1000

0.82163328
0.79281788
0.76423182
0.73590195
0.70785903
0.68013856
0.65278161
0.62583586
0.59935678
0.57340901
0.54806802
0.52342195
0.49957367
0.47664294
0.45476857
0.43411028
0.41484978
0.39719047
0.38135485
0.36757869
0.35610110
0.34715013
0.34092486
0.33757611
0.33718959
0.33977542
0.34526681
0.35352841
0.36437181
0.37757466
0.39289917
0.41010756
0.42897318
0.44928732
0.47086252
0.49353345
0.51715601
0.54160569
0.56677548
0.59257361
0.61892152
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Table 4. Standard error of linear equating on Form Z under nonnormality assumptions

N

VOO~ NPAWLN=O

N,=N,=25

5.46730615
5.07591677
4.89312129
4.73180204
4.56201625
4.39397944
4.22790015
4.06401838
3.90261098
3.74399797
3.58854991
3.43669630
328893505
3.14584288
3.00808616
2.87643158
275175512
2.63504747
2.52741279
2.43005700
2.34426106
2.27133531
2.21255274
2.16906351
2.14179940
2.13138316
2.13806104
2.16167462
220167905
2.25720301
2.32713590
2.41022384
2.50515822
2.61064701
272546495
2.84848414
2.97868863
3.11517757
3.25716103
3.40395153
3.55495363

N,=N,=50

3.86596925
3.58921517
3.45995925
3.34588931
3.22583263
3.10701266
2.98957687
2.87369496
2.75956269
2.64740635
2.53748798
2.43011126
2.32562828
2.22444683
2.12703813
2.03394428
1.94578471
1.86325994
1.78715073
1.71830978
1.65764289
1.60607660
1.56451105
1.53375952
1.51448088
1.50711549
1.51183746
1.52853478
1.55682218
1.59608355
1.64553358
1.70428562
1.77141437
1.84600620
1.92719475
2.01418245
2.10625093
2.20276319
2.30316065
2.40695721
2.51373182

N,=N,=100

2.73365307
2.53795838
2.45157756
2.36590102
2.28100812
2.19698972
2.11395008
2.03200919
1.95130549
1.87199898
1.79427496
1.71834815
1.64446753
1.57292144
1.50404308
1.43821579
1.37587756
1.31752374

1.26370640 .

1.21502850
1.17213053
1.13566766
1.10627637
1.08453175
1.07089970
1.06569158
1.06903052
1.08083731
1.10083952
1.12860150
1.16356795
1.20511192
1.25257911
1.30532350
1.36273247
1.42424207
1.48934431
1.55758879
1.62858052
1.70197576
1.77747682

N,=N, =200

1.93298463
1.79460758
1.73352712
1.67294465
1.61291631
1.55350633
1.49478843
1.43684748
1.37978134
1.32370318
1.26874399
1.21505563
1.16281414
1.11222342
1.06351906
1.01697214
0.97289235
0.93162997
0.89357536
0.85915489
0.82882144
0.80303830
0.78225552
0.76687976
0.75724044
0.75355774
0.75591873
0.76426739
0.77841109
0.79804178
0.82276679
0.85214281
0.88570718
0.92300310
0.96359737
1.00709123
1.05312546
1.10138159
1.15158033
1.20347860
1.25686591
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1.22252682
1.13500949
1.09637881
1.05806310
1.02009784
0.98252367
0.94538721
0.90874214
0.87265034
0.83718340
0.80242415
0.76846865
0.73542824
0.70343185
0.67262851
0.64318966
0.61531115
0.58921453
0.56514668
0.54337726
0.52419271
0.50788602
0.49474183
0.48501735
0.47892091
0.47659176
0.47808498
0.48336514
0.49231040
0.50472594
0.52036341
0.53894243
0.56017041
0.58375842
0.60943249
0.63694042
0.66605503
0.69657488
0.72832335
0.76114670
0.79491180

N,=N,=1000

0.86445700
0.80257291
0.77525689
0.74816359

-0.72131810

0.69474915
0.66848971
0.64257773

10.61705698

0.59197806
0.56739956
0.54338940
0.52002629
0.49740143
0.47562018
0.45480377
0.43509069
0.41663759
0.39961905
0.38422575
0.37066022
0.35912965
0.34983531
0.34295905
0.33864822
0.33700127
0.33805713
0.34179077
0.34811602
0.35689513
0.36795249
0.38108985
0.39610029
0.41277954
0.43093385
0.45038489
0.47097203
0.49255282
0.51500238
0.53821199
0.56208752



Table 5. Standard error of linear equating on Form X under normality assumptions

o]

WoOoONOAUVMPAWLN=O

Ny=N,=25

5.93427521
5.70939684
5.48595368
5.26412852
5.04413480
4.82622299
4.61068828
439788018
4.18821435
3.98218714
3.78039349
3.58354868
3.39251426
3.20832830
3.03223903
2.86573939
2.71059708
2.56887067
2.44289625
2.33522446
2.24848618
2.18517563
2.14736597
2.13641155
2.15272237
2.19569091
2.26379971
2.35486843
2.46635503
2.59562990
2.74017657
2.89771053
3.06623069
3.24402537
3.42965248
3.62190797
3.81979111
4.02247145
4.22925935
4.43958087
4.65295687

Ny=N,=50

4.19616624
4.03715322
3.87915505
3.72230097
3.56674192
3.41265500
3.26024895
3.10977090
2.96151477
2.81583153
2.67314188
2.53395158
2.39886984
2.26863069
2.14411678
2.02638375
1.91668158
1.81646587
1.72738850
1.65125305
1.58991982
1.54515251
1.51841704
1.51067109
1.52220459
1.55258793
1.60074813
1.66514344
1.74397637
1.83538750
1.93759744
2.04899077
2.16815251
2.29387234

2.42513053

2.56107569
2.70100020
2.84431684
2.99053797
3.13925774
3.29013736

Ny =N,=100

296713761
2.85469842
2.74297684
2.63206426
2.52206740
241311149
2.30534414
2.19894009
2.09410717
1.99109357
1.89019675
1.79177434
1.69625713
1.60416415
1.51611951
1.43286969
1.35529854
1.28443533
1.22144812
1.16761223
1.12424309
1.09258782
1.07368298
1.06820577
1.07636119
1.09784545
1.13189986
1.17743422
1.23317752
1.29781495
1.37008829
1.44885527
1.53311535
1.62201268
1.71482624
1.81095398
1.90989556
2.01123573
2.11462967
2.21979044
2.32647843

N,=N,=200

2.09808312
2.01857661
1.93957753
1.86115049
1.78337096
1.70632750
1.63012447
1.55488545
1.48075738
1.40791576
1.33657094
1.26697579
1.19943492
1.13431535
1.07205839
1.01319188
0.95834079
0.90823293
0.86369425
0.82562653
0.79495991
0.77257625
0.75920852
0.75533555
0.76110229
0.77629397
0.80037406
0.83257172
0.87198818
0.91769375
0.96879872
1.02449538
1.08407626
1.14693617
1.21256526
1.28053784
1.35050010
1.42215842
1.49526898
1.56962887
1.64506868

49

43

Ny=N,=500 N,=N,=1000

1.32694428
1.27665994
1.22669654
1.17709492
1.12790283
1.07917627
1.03098124
0.98339590
0.93651320
0.89044411
0.84532168
0.80130585
0.75858925
0.71740402
0.67802926
0.64079881
0.60610793
0.57441694
0.54624821
0.52217206
0.50277679
0.48862013
0.48016563
0.47771614
0.48136336
0.49097141
0.50620100
0.52656459
0.55149375
0.58040049
0.61272211
0.64794777
0.68563003
0.72538612
0.76689361
0.80988324
0.85413126
0.89945196
0.94569114
0.99272046
1.04043279

0.93829130
0.90273490
0.86740544
0.83233180
0.79754774
0.76309286
0.72901383
0.69536591
0.66221483
0.62963907
0.59773269
0.56660880
0.53640360

10.50728124

0.47943909
0.45311318
0.42858303
0.40617412
0.38625581
0.36923141
0.35551688
0.34550660
0.33952837
0.33779633
0.34037529
0.34716922
0.35793816
0.37233739
0.38996497
0.41040512
0.43325996
0.45816826
0.48481364
0.51292545
0.54227567
0.57267393
0.60396201
0.63600858
0.66870462
0.70195937
0.73569708



Table 6. Standard error of linear equating on Form Z under normality assumptions

N

Voo UNbhWLNN=O

N,=N,=25

6.00020498
5.78556435
5.57217539
5.36018758
5.14977396
4.94113564
4.73450734
4.53016409
4.32842953
4.12968600
3.93438678
3.74307104
3.55638173
3.37508664
3.20010270
3.03252262
2.87364198
2.72498287
2.58830712
2.46560833
2.35906842
2.27096276
2.20350369
2.15862777
2.13775767
2.14159531
2.17000962
2.22205798
2.29613376
2.39018984
2.50197389
2.62922572
2.76981427
2.92181500
3.08354072
3.25354154
3.43058746
3.61364314
3.80184058
3.99445310
4.19087198

N,=N,=50

4.24278563
4.09101179
3.94012300
3.79022498
3.64144009
3.49391052
3.34780224
3.20330975
3.06066187
2.92012897
2.78203157
2.64675092
2.51474164
2.38654665
2.26281432
2.14431731
2.03197173
1.92685387
1.83020951
1.74344837
1.66811328
1.60581317
1.55811241
1.52638034
1.51162294
1.51433657
1.53442852

1.57123227

1.62361175
1.69011945
1.76916271
1.85914334
1.95855445
2.06603520
2.18039256
2.30060128
2.42579166
2.55523157
2.68830726
2.82450487
2.96339400

N,=N,=100

3.00010249
2.89278218
2.78608769
2.68009379
2.57488698
2.47056782
2.36725367
2.26508204
2.16421477
2.06484300
1.96719339
1.87153552
1.77819087
1.68754332
1.60005135
1.51626131
1.43682099
1.36249144
1.29415356
1.23280417
1.17953421
1.13548138
1.10175185
1.07931389
1.06887883
1.07079765
1.08500481
1.11102899
1.14806688
1.19509492
1.25098695
1.31461286
1.38490713
1.46090750
1.54177036
1.62677077
1.71529373
1.80682157
1.90092029
1.99722655
2.09543599

N,=N,=200

2.12139281
2.04550589
1.97006150
1.89511249
1.82072004
1.74695526
1.67390112
1.60165487
1.53033094
1.46006449
1.39101579
1.32337546
1.25737082
1.19327333
1.13140716
1.07215865
1.01598586
0.96342693
0.91510476
0.87172419
0.83405664
0.80290658
0.77905620
0.76319017
0.75581147
0.75716828
0.76721426
0.78561613
0.81180588
0.84505972
0.88458135
0.92957167
0.97927723
1.03301760
1.09019628
1.15030064
1.21289583
1.27761578
1.34415363
1.41225244
1.48169700

N,=N,=500

1.34168662
1.29369152
1.24597629
1.19857438
1.15152446
1.10487152
1.05866802
1.01297548
0.96786627
0.92342586
0.87975563
0.83697613
0.79523113
0.75469232
0.71556472
0.67809267
0.64256588
0.60932469
0.57876307
0.55132678
0.52750374
0.50780271
0.49271841
0.48268384
0.47801715
0.47887527
0.48522890
0.49686727
0.51343112
0.53446270
0.55945837
0.58791274
0.61934930
0.65333770
0.68950067
0.72751400
0.76710268
0.80803517
0.85011740
0.89318687
0.93710746

N,=N,=1000

0.94871571
0.91477805
0.88103829
0.84752007
0.81425076
0.78126214
0.74859134
0.71628183
0.68438480
0.65296069
0.62208117
0.59183150
0.56231332
0.53364805
0.50598066
0.47948393
0.45436269
0.43085762
0.40924729
0.38984691
0.37300147
0.35907074
0.34840453
0.34130902
0.33800917
0.33861595
0.34310865
0.35133822
0.36305063
0.37792220
0.39559681
0.41571709
0.43794609
0.46197952
0.48755060
0.51443009
0.54242350
0.57136715
0.60112378
0.63157849
0.66263504
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Table 7. Standard error for equipercentile equating on Form X under nonnormality assumptions

>

b ot ot bk ot
VMBAWN=OWVWOIAUMBWLWND=O

*
*

2.39324058
13.52836270
58.01630680
25.77125490
21.65386050

8.32320517

6.61307744

5.49375765

4.80389240

4.43082156

4.29997486

3.56753665

3.69656585

3.54092734

3.64988709

3.47066362

3.48386188

3.25763575

3.20451201

3.17170196

3.07468686

3.04241511

3.01833353

2.99155065

2.94986438

2.92297951

2.78142616

2.63527812

2.52389957

2.25530403

2.14094283

2.19807917

1.89641704

2.03275435

2.74684755

1.89024509

2.73075955

1.23565139

0.43972470

N,=N,=50

*
*

1.69227664
9.56599700
41.02372400
18.22302910
15.31159160
5.88539482
4.67615191
3.88467329
3.39686489
3.13306397
3.04054139
2.52262936
2.61386678
2.50381374
2.58085991
2.45412978
2.46346236
2.30349633
2.26593218
2.24273196
2.17413193
2.15131236
2.13428410
2.11534575
2.08586911
2.06685864
1.96676530
1.86342303
1.78466650
1.59474078
1.51387520
1.55427669
1.34096935
1.43737438
1.94231453
1.33660512
1.93093860
0.87373747
0.31093232

* represents almost zero

N,=N,=100 Ny=N,=200 N,=N,=500

*
*

1.19662029
6.76418135

*
*

0.84613832
4.78299850

29.00815340 20.51186200
12.88562740 9.11151455
10.82693020 7.65579579

416160259

3.30653872 -

2.74687882
2.40194620
2.21541078
2.14998743
1.78376833
1.84828292
1.77046367
1.82494354
1.73533181
1.74193094
1.62881787
1.60225601
1.58585098
1.53734343
1.52120756
1.50916676
1.49577533
1.47493219
1.46148976
1.39071308
1.31763906
1.26194979
1.12765202
1.07047142
1.09903958
0.94820852
1.01637717
1.37342377
0.94512255
1.36537978
0.61782569
0.21986235

2.94269741
2.33807595
1.94233664
1.69843244
1.56653198
1.52027069
1.26131468
1.30693339
1.25190687
1.29042995
1.22706489
1.23173118
1.15174816
1.13296609
1.12136598
1.08706596
1.07565618
1.06714205
1.05767288
1.04293455
1.03342932
0.98338265
093171152
0.89233325
0.79737039
0.75693760
0.77713834
0.67048468
0.71868719
0.97115726
0.66830256
0.96546930
0.43686874
0.15546616

31

*
*

0.53514486
3.02503386
12.97284060
5.76262778
4.84195040
1.86112526
1.47872907
1.22844156
1.07418300
0.99076182
0.96150361
0.79772545
0.82657725
0.79177542
0.81613956
0.77606398
0.77901520
0.72842950
0.71655067
0.70921412
0.68752088
0.68030470
0.67491989
0.66893106
0.65960973
0.65359809
0.62194580
0.58926610
0.56436110
0.50430131
0.47872937

0.49150544 .

0.42405174
0.45453769
0.61421378
0.42267165
0.61061640
0.27630005
0.09832543

N, =N, =1000

*
*

0.37840456
2.13902196
9.17318355
4.07479318
3.42377596
1.31601429
1.04561935
0.86863935
0.75956208
0.70057440
0.67988572
0.56407707
0.58447838
0.55986977
0.57709782
0.54876010
0.55084693
0.51507744
0.50667784
0.50149011
0.48615068
0.48104807
0.47724043
0.47300569
0.46641451
0.46216364
0.43978209
0.41667406
0.39906356
0.35659488
0.33851278
0.34754683
0.29984986
0.32140668
0.43431473
0.29887399
0.43177100
0.19537364
0.06952658
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Table 8. Standard error for equipercentile equating on Form Z under nonnormality assumptions

N

WO NEWN =D

N,=N,=25

*
*

0.68994440
3.85547229
17.40424190
48.97018300
31.92833080
13.61445150
6.39482090
5.69884380
5.25378107
4.93477347
3.63633267
3.62754618
3.65082827
3.68666930
3.72034189
3.74161656
3.74502398
3.40598885
3.34359555
3.28068814
3.22471189
3.18181755
3.07280653
3.04101311
3.01645712
2.99133987
2.99696040
2.86553254
2.70764443
2.53394278
2.37067055
2.26637153
2.30706573
1.90452992
1.97665817
2.50600189
1.75453639
2.34088510
0.98294781

N,=N,=50

*
*

0.48786436
2.72623060
12.30665750
34.62714850
22.57673920
9.62687100
4.52182122
4.02969109
3.71498422
3.48941178
2.57127549
2.56506250
2.58152542
2.60686886
2.63067898
2.64572244
2.64813185
2.40839781
2.36427909
2.31979683
2.28021564
2.24988477
2.17280233
2.15032099
2.13295728
2.11519671
2.11917102
2.02623749
1.91459374
1.79176813
1.67631722
1.60256668
1.63134182
1.34670602
1.39770839
1.77201093
1.24064458
1.65525573
0.69504906

* represents almost zero

N,=N,=100

*
*

0.34497220
1.92773614
8.70212094
24.48509150
15.96416540
6.80722577
3.19741045
2.84942190
2.62689053
2.46738674
1.81816634
1.81377309
1.82541413
1.84333465.
1.86017095
1.87080828
1.87251199
1.70299442
1.67179778
1.64034407
1.61235595
1.59090877
1.53640326
1.52050656
1.50822856
1.49566993

1.49848020

1.43276627
1.35382222
1.26697139
1.18533528
1.13318576
1.15353287
0.95226496
0.98832908
1.25300095
0.87726820
1.17044255
0.49147390

N,=N,=200

*
*

-0.24393218

1.36311530
6.15332873
17.31357420
11.28836960
4.81343550
2.26091061
2.01484555
1.85749211
1.74470589
1.28563775
1.28253125
1.29076271
1.30343443
1.31533949
1.32286122
1.32406593
1.20419890
1.18213954
1.15989841
1.14010782
1.12494238
1.08640117
1.07516050
1.06647864
1.05759835
1.05958551
1.01311875
0.95729687
0.89588406
0.83815861
0.80128334
0.81567091
0.67335301
0.69885420
0.88600547
0.62032229
0.82762786
0.34752453

N,=N,=500

*
*

0.15427626
0.86210981
3.89170679

10.95006580

7.13939180
3.04428391
1.42992542
1.27430021
1.17478116
1.10344889
0.81310870
0.81114398
0.81635002
0.82436432
0.83189374
0.83665090
0.83741282
0.76160226
0.74765069
0.73358417
0.72106750
0.71147603
0.68710043
0.67999120
0.67450032
0.66888393
0.67014072
0.64075256
0.60544770
0.56660683
0.53009805
0.50677608
0.51587558
0.42586584
0.44199420
0.56035906
0.39232626
0.52343782
0.21979381

N,=N,=1000

*
*

0.10908979
0.60960369
2.75185226
7.74286578
5.04831236
2.15263380
1.01110996
0.90106632
0.83069573

0.78025620
0.57495468

0.57356541

0.57724663

0.58291360
0.58823770
0.59160152
0.59214028
0.53853412
0.52866888
0.51872234
0.50987172
0.50308953
0.48585337
0.48082639
0.47694375
0.47297236
0.47386105
0.45308048
0.42811617
0.40065153
0.37483593
0.35834480
0.36477912
0.30113262
0.31253710
0.39623369
0.27741656
0.37012643
0.15541770
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Table 9. Standard error for equipercentile equating on Form X under normality assumptions

>

VOO~ NP W=D

Ny=N,=25

*
*

0.34885285
1.13685261
2.19125837
3.23429040
3.99643534
4.40855780
4.54106024
4.53679999
443707314
4.30516649
4.15219515
3.98865282
3.81336022
3.63166370
3.44668582
3.26708413
3.10079508
2.95495607
2.83651152
2.74919188
2.69518935
2.67617022
2.69262188
2.74393370
2.83034240
2.95414328
3.11824711
3.32562906
3.58497509
3.90497035
4.29891411
476920822
5.31021342
5.87000233
6.35192623
6.54827544
6.14703270
4.89175185
2.87543233

Ny=N,=50

*
*

0.24667622
0.80387619
1.54945365
2.28698868
2.82590653
3.11732111
3.21101449
3.20800203
3.13748451
3.04421242
2.93604535
2.82040346
2.69645287
2.56797403
2.43717492
2.31017734
2.19259323
2.08946947
2.00571653
1.94397222
1.90578667
1.89233811
1.90397119
1.94025413
2.00135431
2.08889475
2.20493368
2.35157486
2.53496020
2.76123101
3.03979132
3.37233947
3.75488792
4.15071845
4.49149011
4.63032997
4.34660850
3.45899091
2.03323770

* represents almost zero

N,=N,=100

*
*

0.17442643
0.56842631
1.09562919
1.61714520
1.99821767
2.20427890
2.27053012
2.26839999
2.21853657
2.15258325
2.07609757
1.99432641
1.90668011
1.81583185
1.72334291
1.63354206
1.55039754
1.47747803
1.41825576
1.37459594
1.34759467
1.33808511
1.34631094
1.37196685
1.41517120
1.47707164
1.55912356
1.66281453
1.79248754
1.95248517
2.14945705
2.38460411
2.65510671
2.93500117
3.17596311
3.27413772
3.07351635
2.44587593
1.43771617

Ny=N,=200

*
*

0.12333811
0.40193809
0.77472683
1.14349434
1.41295327
1.55866056
1.60550725
1.60400102
1.56874225
1.52210621
1.46802267
1.41020173
1.34822643
1.28398702
1.21858746
1.15508867
1.09629661
1.04473474
1.00285827
0.97198611
0.95289333
0.94616906
0.95198559
0.97012706
1.00067715
1.04444737
1.10246684
1.17578743
1.26748010
1.38061551
1.51989566
1.68616974
1.87744396
2.07535923
2.24574505
2.31516498
2.17330425
1.72949545
1.01661885

53

Ny=Ny=500

*
*

0.07800587
0.25420797
0.48998027
0.72320932
0.89363011
0.98578349
1.01541194
1.01445932
0.99215972
0.96266449
0.92845906
0.89188988
0.85269327
0.81206469
0.77070238
0.73054222
0.69335886
0.66074826
0.63426326
0.61473799
0.60266266
0.59840985
0.60208856
0.61356223
0.63288380
0.66056652
0.69726125
0.74363326
0.80162480
0.87317792
0.96126642
1.06642738
1.18739982
1.31257242
1.42033388
1.46423890

1.37451830

1.09382897

1 0.64296622

Ny=Ny=1000

*
*

0.05515848

0.17975218
0.34646837
0.51138621
0.63189191
0.69705419
0.71800467
0.71733106
0.70156286
0.68070659
0.65651970
0.63066139
0.60294519
0.57421645
0.54496888
0.51657136
0.49027875
0.46721958
0.44849185
0.43468540
0.42614685
0.42313967
0.42574090
0.43385401
0.44751643
0.46709107
0.49303816
0.52582812
0.56683433
0.61743002
0.67971800
0.75407803
0.83961846
0.92812886

1.00432772
1.03537326
0.97193121
0.77345388
0.45464577
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Table 10. Standard error for equipercentile equating on Form Z under normality assumptions

N

Nole N No WU I NIV N6 Q!

N,=N,=25

*
*

0.12588143
0.42052686
1.08323427
2.20575189
3.53216154
4.70103362
5.64386078
6.20151262
6.32898957
6.04108235
5.69102975
5.24810205
4.78644772
4.28878529
3.91419618
3.59264931
2.48332600
3.08992507
2.93114165
2.81472259
2.73567580
2.69018708
2.67322832
2.68879556
2.73095967
2.79770960
2.90500035
3.02304806
3.16485393
3.32524846
3.54397029
3.73612946
3.92064183
4.07544714
4.24232948
4.22186782
4.02072428
3.52449628
2.49573903

N,=N,=50

*
*

0.08901161
0.29735740
0.76596230
1.55970212
2.49761538
3.32413275
3.99081223
4.38513163
4.47527144
4.27169030
4.02416573
3.71096855
3.38452964
3.03262916
2.76775466

2.54038669

1.75597666
2.18490697
2.07263014
1.99030943
1.93441491
1.90224953
1.89025787
1.90126558
1.93108010
1.97827943
2.05414545
2.13761778
2.23788968
2.35130574
2.50596543
2.64184248
2.77231242
2.88177631
2.99977995
2.98531137
2.84308141
2.49219522
1.76475399

* represents almost zero

N,=N,=100

*
*

0.06294072
0.21026343
0.54161713
1.10287595
1.76608077
2.35051681
2.82193039
3.10075631
3.16449478
3.02054118
2.84551487
2.62405103
2.39322386
2.14439264
1.95709809
1.79632466
1.24166300
1.54496253
1.46557082
1.40736130
1.36783790
1.34509354
1.33661416
1.34439778
1.36547984
1.39885480
1.45250018
1.51152403
1.58242697
1.66262423
1.77198515
1.86806473
1.96032091
2.03772357
2.12116474
2.11093391
2.01036214
1.76224814
1.24786951

N,=N,=200

*
*

0.04450581
0.14867870
0.38298115
0.77985106
1.24880769
1.66206638
1.99540611
2.19256581
2.23763572

- 2.13584515

2.01208286
1.85548427
1.69226482
1.51631458
1.38387733
1.27019335
0.87798833
1.09245348
1.03631507
0.99515472
0.96720746
0.95112476
0.94512894
0.95063279
0.96554005
0.98913972
1.02707272
1.06880889
1.11894484
1.17565287
1.25298271
1.32092124
1.38615621
1.44088815
1.49988997
1.49265568
1.42154070
1.24609761
0.88237700

54

N,=N, =500

*
*

0.02814794
0.09403267
0.24221855
0.49322112
0.78981533
1.05118307
1.26200564
1.38670038
1.41520509
1.35082708
1.27255294
1.17351129
1.07028225
0.95900154
0.87524087
0.80334081
0.55528858
0.69092825
0.65542320
0.62939111
0.61171571
0.60154412
0.59775202
0.60123297
0.61066115
0.62558689
0.64957783
0.67597410
0.70768285
0.74354816
0.79245585
0.83542395
0.87668216
0.91129768
0.94861371
0.94403834
0.89906128
0.78810133
0.55806421

N,=N,=1000

*
*

0.01990360
0.06649114
0.17127438
0.34876000
0.55848378
0.74329868
0.89237274
0.98054524
1.00070112
0.95517899
0.89983081

0.82979779
0.75680384
0.67811650
0.61888876
0.56804773
0.39264832
0.48856005
0.46345419
0.44504672
0.43254832
0.42535593
0.42267451

0.42513591

0.43180264
0.44235673
0.45932089
0.47798587
0.50040734
0.52576795
0.56035090
0.59073394
0.61990790
0.64438477
0.67077119
0.66753592
0.63573233
0.55727179
0.39461099
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- Table 11. Sample size required using equations (26) through (28): z-score range -2 to +2

--- The alternative procedure of theoretical methods

Standard Unit Mean Linear Equipercentile
0.05 1600 4800 12226
10 400 1200 3057
20 100 300 765
.30 45 134 340
40 25 75 192
.50 16 48 123
.60 12 34 85
10 9 25 63
.80 7 19 48
90 3 i3 3%
1.0 4 12 .31

Table 12. Sample size required using equations (23) through (25): z-score range -3 to +3

--- The first procedure of theoretical methods

Standard Unit Mean Linear Equipercentile
0.05 1600 2400 4825
10 400 600 1207
.20 100 150 302
.30 45 67 135
40 25 38 76
.50 16 24 49

.60 12 17 34
.10 9 13 25
.80 7 10 19
.90 5 8 15
1.0 4 6 13

55



Table 13. Summary of the minimum sample size required based on real data

50

Mean Linear Equipercentile
Form Nonnormality i Normality { Nonnormality ; Normality
X 22 29 32 44 51
Z 81 89 99 145 161
Table 14. Sample size results based on Method 1 (M1) and Method 2 (M2)
Mean Linear Equipercenule
Form M1 M2 M1 M2 Mi M2
X u=4:i 25: 22:iu=.44 31 32: u=.45 60 51
Z u=21{ 100 81 u=.25 96 99:¢ u=.25 193 16l

Note: In Method 1, the u values are derived from real data [equation (29)]. Then, these values
are used in formulas (23), (24), and (25). In Method 2, formulas (18), (20), and (22) are used

and do not require a u-value.
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Figure 4. Standard ‘error of linear equating under nonnormality assumptions
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Figure 5. Standrad error of linear equating under nonnormality assumptions

—o— n2=ny=25
—— n2=ny=50
—t— n2=ny=100
g n2=ny=200
R At =ny=500
g n2=ny=1000

Standard error

50

Form Z raw score

ERIC 61

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

Standard error

Figure 6. Standard error of linear equating under normality assumptions

Form X raw score

50

56

nil=ny=25
n1=ny=50
n1=ny=100
n1=ny=200
n1=ny=500
n1=ny=1000



57

Figure 7. Standard error of linear equating under normality assumptions
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Figure 8. Standard error of equipercentile equating under nonnormality assumptions
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Figure 9. Standard error of equipercentile equating under nonnormality assumptions
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Figure 10. Standard error of equipercentile equating under normality assumptions
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